Atomic Energy Education Society

Session : 2023-24

Class: X

Subject: Mathematics

Chapter: 2 Polynomials Answer Key

1. (b) $3,-1$
2. b) $x^{2}-3 x-10$
3. (a) both negative
4. (a) -2
5. (a) $q x^{2}+p x+1$
6. (a) $-9 / 2$
7. (a) -1
8. (b) $-3 / 7$
9. (d) more than 3
10. (b) 0
11. We find that the graph $\mathrm{y}=\mathrm{g}(\mathrm{x})$ is a straight line. So, $\mathrm{g}(\mathrm{x})$ is a linear polynomial.
12. The number of zeroes is 3 as the graph given in the question intersects the x-axis at 3 points.
13. Since the graph of $f(x)$ intersects the x-axis at only one point, therefore $f(x)$ has exactly one zero.
14. k is $-2 / 3$
15. $1 / 2$ and $-1 / 2$
16. $x^{2}-+2 x-15$
17. $x^{2}-3 x-2$
18. $x^{2}+\frac{1}{2} x+\frac{1}{2}$
19. Sum of zeroes $=-5$ and Product of zeroes $=6$
20. $\mathrm{k}=3$
21. (i) $x^{2}+\sqrt{ } 2$
(ii) $x^{2}-(2+V 3) x+2-v 3$
(iii) $x^{2}-2 \sqrt{ } 5 x-v 5$
(iv) $2 x^{2}-3 x-1$
22. - $67 / 6$
23. $=x^{2}-11 x+30$
24. $x=1,-1 / 4$

Verification: Sum of the zeroes $=-($ coefficient of $x) /$ coefficient of x^{2}
$\alpha+\beta=-b / a$
$1-1 / 4=-(-3) / 4$
or $3 / 4=3 / 4$
Product of the zeroes $=$ constant term $/$ coefficient of x^{2}
$\alpha \beta=c / a$
$1(-1 / 4)=-1 / 4$
$\Rightarrow-1 / 4=-1 / 4$
25. Since the graph of quadratic polynomial $f(x)=a x^{2}+b x+c$ cuts negative direction of the y-axis, we put $x=0$ to find the intersection point on y-axis.
$y=0+0+c=c$
So, the point is $(0, c)$.

As the given quadratic polynomial cuts negative direction of y-axis. So $c<0$
26. Discriminant $(D)=-8$

Since the discriminant is negative so this polynomial has no real zeros
27. b / ac
28. $k=-71 / 2$
29. $(4)^{2}-2(-5)=16+10=26$
30. $t=-1,-7 / 5$

Verification: Sum of the zeroes $=-($ coefficient of $x) /$ coefficient of x^{2}
$\alpha+\beta=-b / a$
$(-1)+(-7 / 5)=-(12) / 5=-12 / 5=-12 / 5$
Product of the zeroes $=$ constant term $/$ coefficient of $x^{2}=c / a$
$\alpha \beta=(-1)(-7 / 5)=7 / 5$
$\Rightarrow 7 / 5=7 / 5$
31. $x^{2}-x-20$
32. $k=6$
33. $x^{2}+2 x+1$
34. $s==-1 / 2,-\sqrt{ } 2$ Verification
35. the zeroes of the given quadratic polynomial are $-\sqrt{ } 15 / 2, ~ \sqrt{2} 5 / 2$

Verification of relationship between zeroes and coefficients
36. $v=-5 \mathrm{v} 3 \quad$ Or v = $~=~ 3$
37. the value of expression is b.
38. $\Rightarrow \mathrm{y}=2 / 3$ or $\mathrm{y}=-1 / 7$

Verification of relationship between zeroes and coefficients
39. Sum of zeroes of new polynomial $=16 / 3$

Product of the zeroes of new polynomial $=16 / 3$
polynomial $=x^{2}-($ Sum of the zeroes $) x+$ Product of the zeroes

$$
=\left(3 x^{2}-16 x+16\right) / 3
$$

40. $\alpha=5, \beta=-5 / 6$ or $-6 / 5$
